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Al for mission-critical systems

Al is being deployed everywhere, including within mission-critical systems.

» Examples: airport security, loan dispersal, self-driving car, online medical advice
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Al for mission-critical systems

Al is being deployed everywhere, including within mission-critical systems.

» Examples: airport security, loan dispersal, self-driving car, online medical advice

Al makes mistakes.
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Al for mission-critical systems

Al is being deployed everywhere, including within mission-critical systems.

» Examples: airport security, loan dispersal, self-driving car, online medical advice
Al makes mistakes.

We need quality assurance for Al.
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Outline

» Deep inspection of Al model

» Robustness property

> Sensitivity property

» A novel property
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Al Model

Input — Al Model — Output
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Al Model

Input — Al Model — Output

Al model is a function that approximates the relationship of input and output
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Deep inspection of Al models

» Check models for robustness, adversarial attacks, sensitivity, data poisoning, and fairness
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Deep inspection of Al models
» Check models for robustness, adversarial attacks, sensitivity, data poisoning, and fairness

Robustness
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Deep inspection of Al models
» Check models for robustness, adversarial attacks, sensitivity, data poisoning, and fairness

Robustness

B.(x)={z|||z—x|| =¢} Vz € B:(x), f(x) = f(2)

@O0 Talk@QuantFormal 2025

10


http://creativecommons.org/licenses/by-nc-sa/4.0/
@

Deep inspection of Al models
» Check models for robustness, adversarial attacks, sensitivity, data poisoning, and fairness

Robustness

B.(x)={z|||z—x|| =¢} Vz € B:(x), f(x) = f(2)

A lot of work has been done in the literature.
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Deep inspection of Al models

» Check models for robustness, adversarial attacks, sensitivity, data poisoning, and fairness
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Deep inspection of Al models

» Check models for robustness, adversarial attacks, sensitivity, data poisoning, and fairness

The Sensitivity Problem

A model is sensitive to a set of features if changing those features (while keeping others fixed)
can change the model’s output.

z eR" yeR"
Age = 25, Gender = M, Age = 25, Gender = M,
Spending = 55K Spending =

W_J %

Confident v/ Confident X

Sensitive w.r.t. {Spending}
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Deep inspection of Al models

» Check models for robustness, adversarial attacks, sensitivity, data poisoning, and fairness
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Deep inspection of Al models

» Check models for robustness, adversarial attacks, sensitivity, data poisoning, and fairness

We will discuss a newly discovered anomaly.
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Topic 1.1

Sensitivity property
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Sensitivity of a loan dispersal model

Intuitive description: a small set of features can alter the decision.

In other words, all decisions of the model are broad-based decisions.
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Sensitivity of a loan dispersal model

Intuitive description: a small set of features can alter the decision.
In other words, all decisions of the model are broad-based decisions.

Example 1.1
Someone should not be able to manipulate their age to change the decision of the Al.
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Sensitivity of a loan dispersal model

Intuitive description: a small set of features can alter the decision.
In other words, all decisions of the model are broad-based decisions.

Example 1.1
Someone should not be able to manipulate their age to change the decision of the Al.

» To give formal guarantees, we need to first define the problem mathematically.
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Formal definition of sensitivity

The sensitivity problem

Given the model X and feature set F C F, are there two loan applications x1, x? such that
» x! and x? differ only on F (same on all the other features)
» but, outputs/decisions are significantly different, i.e., X(x') < —gap and X(x?) > gap for
some given gap > 0.
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Formal definition of sensitivity

The sensitivity problem

Given the model X and feature set F C F, are there two loan applications x1, x? such that
» x! and x? differ only on F (same on all the other features)
» but, outputs/decisions are significantly different, i.e., X(x') < —gap and X(x?) > gap for
some given gap > 0.

Example 1.2

Is it possible to change the decision of the model by only changing the age?
F = {age}
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Topic 1.2

Models under analysis: tree ensembles
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Tree ensemble models

Widely used in the financial industry for learning on tabular data.

[RIORIE) Talk@QuantFormal 2025

23


http://creativecommons.org/licenses/by-nc-sa/4.0/
@

Tree ensemble models

Widely used in the financial industry for learning on tabular data.
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Tree ensemble models

X(age, asset, hasCar) = o1

Give a loan if X(age, asset, hasCar) > 0.
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Tree ensemble models

X(age, asset, hasCar) = o1 + 0

Give a loan if X(age, asset, hasCar) > 0.

Widely used in the financial industry for learning on tabular data.
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Tree ensemble models
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Tree ensemble models
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Tree ensemble models
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Tree ensemble models
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Tree ensemble models
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Tree ensemble models
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Examples of tree ensembles

Tree ensembles have variations.
» XGBoost : level-wise growth during training
» LightGBM : leaf-wise growth during training

» Random Forest : decision via majority vote
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Examples of tree ensembles

Tree ensembles have variations.
» XGBoost : level-wise growth during training
» LightGBM : leaf-wise growth during training

» Random Forest : decision via majority vote

In our verification question, their differences do not matter.
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Example: sensitive pair

The following pair is for an xgboost model with 200 trees, 5 depth, and 9 features on the dataset
pimadiabetes from UCI, varying feature “BloodPressure”.
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Example: sensitive pair

The following pair is for an xgboost model with 200 trees, 5 depth, and 9 features on the dataset
pimadiabetes from UCI, varying feature “BloodPressure”.

Pointl: {'Pregnancies’: 17, 'Glucose': 188, 'BloodPressure’: 122, 'SkinThickness": 33, 'Insulin’:
846, 'BMI': 67.1, 'DiabetesPedigreeFunction’: 2.42, 'Age": 81},

Output: 0.579602

Point2: {'Pregnancies’: 17.0, 'Glucose’: 188, 'BloodPressure’: 76, 'SkinThickness’: 33, 'Insulin’:
846, 'BMI': 67.1, 'DiabetesPedigreeFunction’: 2.42, 'Age": 81}

Output: -0.557419
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Is the sensitivity of tree ensembles an NP-hard problem?
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Is the sensitivity of tree ensembles an NP-hard problem?

Yes, it's an NP-Hard problem
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Is the sensitivity of tree ensembles an NP-hard problem?

Yes, it's an NP-Hard problem

This will be covered at the end.
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Existence to quality

We are able to solve the problem, but what about the quality of the sensitive pairs?
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Existence to quality

We are able to solve the problem, but what about the quality of the sensitive pairs?

Existing literature looks at "what". [kantchelian et al. ICML'16, Ahmad et al. ICLR '25].
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Existence to quality

We are able to solve the problem, but what about the quality of the sensitive pairs?

Existing literature looks at "what". [kantchelian et al. ICML'16, Ahmad et al. ICLR '25].

Here is a sensitive pair found by existing tool for a model that classifies letters between 3 and 8.
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Existence to quality

We are able to solve the problem, but what about the quality of the sensitive pairs?

Existing literature looks at "what". [kantchelian et al. ICML'16, Ahmad et al. ICLR '25].

Here is a sensitive pair found by existing tool for a model that classifies letters between 3 and 8.

Proposed : " Find where not just what”
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Search guided by marginal data distribution

Let D be the set of data points and K¢ the number of guards for feature f.

@O0 TalkeQuantFormal 2025

46


http://creativecommons.org/licenses/by-nc-sa/4.0/
@

Search guided by marginal data distribution

Let D be the set of data points and K¢ the number of guards for feature f.

The following defines the marginal distribution of the data points.

Kr |{X = D | Tf < xXr < 17
mr(v) = E : (1(7f(k1)§V<Tfk) ) D|

k=2
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Search guided by marginal data distribution

Let D be the set of data points and K¢ the number of guards for feature f.

The following defines the marginal distribution of the data points.

Ke H{xeD| ¢ < xp <
(k-1) < Xr < Tpc) }|
me(v) = Z (I(Tf(k1)§v<7fk) ’ D|
k=2

We modify our constraints to optimize the following objective function.

f'
u(x ), x@) = [ mi (0, x).
i=1
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Example(1): Data-aware sensitivity search

We made our search data aware, which resulted in finding the following sensitive pair for the model.
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Example(2): data-aware vs. without data-aware analysis

Without data-aware Analysis

Pointl: {'Pregnancies’: 17, 'Glucose’: 188,
'BloodPressure’: 122, 'SkinThickness': 33, 'Insulin’:
846, 'BMI': 67.1, 'DiabetesPedigreeFunction’: 2.42,

'Age’: 81},

Point2: {'Pregnancies’: 17.0, 'Glucose': 188,
'BloodPressure’: 76, 'SkinThickness': 33, 'Insulin’: 846,
'BMI': 67.1, 'DiabetesPedigreeFunction’: 2.42, 'Age’:
81}

Distance from data: 0.3534358888

Nearest Training Datapoint:

{'Pregnancies’: 10, 'Glucose': 148, 'BloodPressure’: 84,
'SkinThickness': 48, 'Insulin’; 237, 'BMI’: 37.6,
'DiabetesPedigreeFunction’: 1.001, 'Age’: 51}
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Example(2): data-aware vs. without data-aware analysis

Without data-aware Analysis Data-aware Analysis
Pointl: {'Pregnancies’: 17, 'Glucose’: 188, Point 1: {'Pregnancies’: 0, 'Glucose’: 139,
'BloodPressure’: 122, 'SkinThickness': 33, 'Insulin’: 'BloodPressure’:70, 'SkinThickness': 0, 'Insulin’: 0,
846, 'BMI': 67.1, 'DiabetesPedigreeFunction’: 2.42, 'BMI": 32.75, 'DiabetesPedigreeFunction’: 0.3595, 'Age’:
'Age’: 81}, 21}
Point2: {'Pregnancies’: 17.0, 'Glucose': 188, Point2: {'Pregnancies’: 0, 'Glucose’: 139,

'BloodPressure’: 76, 'SkinThickness': 33, 'Insulin’: 846, 'BloodPressure’:79, 'SkinThickness': 0, 'Insulin’: 0,
'BMI': 67.1, 'DiabetesPedigreeFunction’: 2.42, 'Age’:  'BMI’: 32.75, 'DiabetesPedigreeFunction’: 0.3595, 'Age’:

81} 21}
Distance from data: 0.3534358888 Distance from data: 0.03051399
Nearest Training Datapoint: Nearest Training Datapoint:
{'Pregnancies’: 10, 'Glucose': 148, 'BloodPressure’: 84, {'Pregnancies’: 0, 'Glucose': 132, 'BloodPressure’: 78,
'SkinThickness': 48, 'Insulin’; 237, 'BMI’: 37.6, 'SkinThickness': 0, 'Insulin’; 0, 'BMI’: 32.4,
'DiabetesPedigreeFunction’: 1.001, 'Age’: 51} 'DiabetesPedigreeFunction’: 0.393, 'Age’: 21}

The insensitive features in the training data points that are far away from the sensitive pair are highlighted with cyan
color.
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Better quality results!

After adding the objective function, we found a sensitive pair closer to the data.

Method Win% Draw% Loss%

Objective function vs No-Objective function  76.6 1.15 22.1
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Improvement: correlation aware guidance

Marginal distribution ignores the correlation between features.
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Improvement: correlation aware guidance

Marginal distribution ignores the correlation between features.

For highly correlated data distributions, we add cavity avoidance constraints.

fl e e
[ ]
ubj [* "
[ ]

Ib; L4
_____ 1 o
’.OE E ¢

Ibj ubj f

We search for the cavities in the training data and remove them from our search space.
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Synthesis of cavities
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Synthesis of cavities
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Synthesis of cavities
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Synthesis of cavities

fi oB
oA
10F--------------
oC
3
f_2 4

@O0 Talk@QuantFormal 2025

58


http://creativecommons.org/licenses/by-nc-sa/4.0/
@

Synthesis of cavities

f | oB

. oA
10} ----- o

: oC
3 :

5 f !

<10ANfh <5b

@O0 Talk@QuantFormal 2025

59


http://creativecommons.org/licenses/by-nc-sa/4.0/
@

Synthesis of cavities
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Synthesis of cavities
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Synthesis of cavities
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Synthesis of cavities
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Experiments: after adding cavity constraints

Method

Win%

Draw%

Loss%

Cavity Constraints vs Unguided Search

86.7

1.1

12.1
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Topic 1.3

A novel property: Glitch
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A newly discovered inconsistency:Glitches

The following glitch is found in an xgboost model with 100 trees, 5 depth, and 21 features on the
breastcancer dataset from UCI.

o
0.8 _,—p,A
0.7
0.6 prediction = 1
malignant
0.5 77777777 {7 oL L
prediction = 0
0.4 benign
0.3 p
4 6 8
MCP 10-2
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A newly discovered inconsistency:Glitches

The following glitch is found in an xgboost model with 100 trees, 5 depth, and 21 features on the
breastcancer dataset from UCI.

o
0.8 _,—p,A
0.7
0.6 prediction = 1
malignant
0.5 77777777 {7 oL L
prediction = 0
0.4 benign
0.3 p
4 6 8
MCP 10-2

We call it “Glitches".
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Formalisation of glitches in tree ensemble models
Let : R™ — R be a tree ensemble model.

Let (x~,x,xT) be an input triple such that there exists an i with X;j <x; < xfr, and for every
JF#, X, =Xj and x; = xjf. The triple (x~,x,x") is a glitch in the dimension i with magnitude
«a > 0 if « is the largest constant that satisfies:

F(x7) > F(x) A F(x) < F(xT) Class A

or (1) Class B

F(x7) < F(x) A F(x) > F(xh)

min{d(F(x), F(x7)), d(F(x), F(xT))} > o
d(x—,xT) -

8f2
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Evidence of Glitches in Neural Networks

plastic_bag

bib
(p=0.861) =0 (p=0.6882),e=0.06171

plastic_bag
(p=0.6702),e=0.15457
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Conclusion

» We have developed methods to verify Al systems

» Technology exists that can analyze small to mid-size Al systems

» Call to action: develop analysis technology that scales to large Al systems.
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Conclusion

» We have developed methods to verify Al systems

» Technology exists that can analyze small to mid-size Al systems

» Call to action: develop analysis technology that scales to large Al systems.

Questions
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Topic 1.4

Is the sensitivity of tree ensembles an NP-hard problem?
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The sensitivity of tree ensembles is NP-hard

Theorem 1.1

The single feature sensitivity problem, i.e., checking whether a given tree ensemble classifier is
F-sensitive for —F— = 1, is NP-hard.
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The sensitivity of tree ensembles is NP-hard

Theorem 1.1

The single feature sensitivity problem, i.e., checking whether a given tree ensemble classifier is
F-sensitive for —F— = 1, is NP-hard.

Proof.

Take the 3CNF formula ¢ = ¢; A ... A ¢y with m clauses and vy, ..., v, variables.
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The sensitivity of tree ensembles is NP-hard

Theorem 1.1

The single feature sensitivity problem, i.e., checking whether a given tree ensemble classifier is
F-sensitive for —F— = 1, is NP-hard.

Proof.

Take the 3CNF formula ¢ = ¢; A ... A ¢y with m clauses and vy, ..., v, variables.

We construct a sensitivity problem for a tree ensemble X such that X is sensitive iff ¢ is satisfiable.
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The sensitivity of tree ensembles is NP-hard

Theorem 1.1
The single feature sensitivity problem, i.e., checking whether a given tree ensemble classifier is

F-sensitive for —F— = 1, is NP-hard.

Proof.

Take the 3CNF formula ¢ = ¢; A ... A ¢y with m clauses and vy, ..., v, variables.
We construct a sensitivity problem for a tree ensemble X such that X is sensitive iff ¢ is satisfiable.

We consider a formula ¢ = ¢ A v,11, where v, 11 is a fresh variable.
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Proof: a tree for each clause

In our tree ensemble X, we construct a decision tree for each clause of ¢'.
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Proof: a tree for each clause

In our tree ensemble X, we construct a decision tree for each clause of ¢'.

Example 1.3
Let us suppose (v V v5 V —vg) € ¢'. We construct the following tree for the clause.
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Proof: a tree for each clause

In our tree ensemble X, we construct a decision tree for each clause of ¢'.

Example 1.3

Let us suppose (v V v5 V —vg) € ¢'. We construct the following tree for the clause.

Recall ¢ has m + 1 clauses.
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Proof: consider the last clause of ¢’

The tree for the last clause of ¢’ is vjy1.
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Proof: Decision vs satisfaction

Theorem 1.2
x = ¢ iff X(x) > 0.

Proof.

If x = ¢, all of the trees in X produce positive output. Therefore, X(x) > 0.
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Proof: Decision vs satisfaction

Theorem 1.2
x = ¢ iff X(x) > 0.

Proof.

If x = ¢, all of the trees in X produce positive output. Therefore, X(x) > 0.

If x & ¢/,
> at least one of the tree in X produce -1 output, and

» the sum of outputs of all the other trees is at most m/(m + 1).
Therefore, X(x) < 0.
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Proof: Sensitivity vs satisfiability

Theorem 1.3
¢ is satisfiable iff X is {v,1}-sensitive.

Proof.

Assume ¢ is satisfiable. Let x |= ¢ for some x.
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Proof: Sensitivity vs satisfiability

Theorem 1.3
¢ is satisfiable iff X is {v,1}-sensitive.

Proof.

Assume ¢ is satisfiable. Let x |= ¢ for some x.

Iff, x[Vatr1 — 1] E ¢ and x[vaq1 — 0] B~ &'
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Proof: Sensitivity vs satisfiability

Theorem 1.3
¢ is satisfiable iff X is {v,1}-sensitive.

Proof.

Assume ¢ is satisfiable. Let x |= ¢ for some x.

Iff, x[Vatr1 — 1] E ¢ and x[vaq1 — 0] B~ &'

Iff, X(x[Vnt1 — 1]) > 0 and X(x[vpt1 — 0]) < 0.
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Proof: Sensitivity vs satisfiability

Theorem 1.3
¢ is satisfiable iff X is {v,1}-sensitive.

Proof.

Assume ¢ is satisfiable. Let x |= ¢ for some x.

Iff, x[Vatr1 — 1] E ¢ and x[vaq1 — 0] B~ &'

Iff, X(x[Vnt1 — 1]) > 0 and X(x[vpt1 — 0]) < 0.

Iff, X is {vnt1}-sensitive.
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