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Autonomous systems today ...
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Increased ML in Autonomy

% | Market Insights
. Trend: ARTIFICIAL INTELLIGENCE (Al) IN AUTOMOTIVE MARKET
2019 CAGR (2020-26) 2026 -.¢ Semi-autonomous vehicles

» Data-driven machine learning techniques 06665767’ it e 1) 0
>$1 BN >35% >$12 BN e i‘;%f;em market share (2019);
CAGR (2020-26)

@ »

Machine Learning Data Mining Deep learning APAC market CAGR
technology segment segment (2020-26): >40%

are essential to perform perception tasks

» The use of ML techniques is projected to
grow
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Autonomous systems today ...

Jbt: Drone Crashes in Texas

' Cruise to pay $1.5M penalty in
connection with San Francisco
pedestrian accident, NHTSA says

£~ X Bell APT Autonomous Cargo

http://nvidia.com v Y

e Growing concerns:

» Unpredictability hinders deployment and
adoption in safety-critical applications

. How can we raise assurance in such systems?
» Neural models (e.g. DNNs) are brittle:

unanticipated changes in the environment
may cause faulty behavior
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Runtime monitoring

Temporal logics Stream-based languages

LTL MTL RTLola

STL o TeSSLa

Spec

Instrumentation

, Verdict
Monitor

Sensor glitches

lealth management

Assumption validation y,
DOS attacks

Runtime monitoring is a technique based on extracting information from a system at
runtime and evaluating this information to determine whether an execution of the system
satisfies or violates a given property, and consequently deploying the necessary recovery
mechanisms.



Runtime monitoring in autonomous systems
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Runtlme momtormg In Autonomous Systems
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Runtime monitoring in autonomous s

On-ground vehicles

Plane in landing
approach

Perception

module Example is inspired by a challenge problem provided by Boeing

in the DARPA Assured Autonomy program.

Runtime monitor: Estimate the risk of colliding with one of the vehicles

Spec

Uncertainty in
environments!

Verdict

.......... Sensors
| E 8O0 =

Monitor

Situational awareness

Uncertainty in sensors: | |



Runtime monitoring in autonomous s

On-ground vehicles

Plane in landing
approach

Perception
module

Runtime monitor: Estimate the risk of colliding with one of the vehicles
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Runtime momtormg In autonomous systems
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How can we build monitors that are resilient to uncertainty
in the information received about the environment?

Spec

Verdict

Monitor

Uncertainty in data

What is the risk of issuing a verdict?
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In this talk

® Runtime monitoring under uncertainty
>~ formal problem statement

© Monitoring over Markov decision processes
>~ from exponential to polynomial complexity

@ Learning robust uncertainty models for monitoring

» point-based models vs interval-based models
» model-based vs model-free
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Problem statement



Runtime assurance in Al-based autonomy

Verdict

Sensors
B S

Monitor
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Problem Statement

Spec
e V , Verdict
2 Monitor

B8 ..

--------------------------------------------------------------------------------------------------------------------------------

*

. Problem Statement: Given a distribution d € Dist(X% ), a mapping /: 25 — Dist(

Ssys

: function r: 2.,s — R,and aconstant A, learn a monitor M such that:

&
obs

), arisk

-------------------------------------------------------------------------------------------------------------------------------

Junges, Seshia, Torfah. Active Learning of Runtime Monitors under Uncertainty. iFM 2024
13



Monitoring over Markov decision processes
Junges, Torfah, Seshia. CAV 2021



Monitoring MDPs

On-ground vehicles

Plane in landing
approach

Perception
module

Example is inspired by a challenge problem provided by Boeing
in the DARPA Assured Autonomy program.

i perception | r ——| associates a state in M with a risk |

venhicles e | Environment

‘ nondeterministi_Zl Monitor
| probabilistic :l

Risk

Given M and r, what is the risk after observing a trace 7 over Vops ?
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Monitoring MDPs

-

World, State risk
1

—

P
Progress of plane
towards runway

- -
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Monitoring MDPs

Dz D1 DO |_
N y
R
World, State risk Sensor
W, r S
'
M, r
What is the risk after observing a trace 77
p
Risk(7) = Sup > Pro(m | 7) - r(last(m))

o€ Strategies(M) me&Paths(M,|7])
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Algorithmic Approach

Filtering

Too expensive
Needs to track
exponential number of beliefs.

- Algorithmic analysis of nonlinear hybrid systems. IEEE Trans. Autom Control 1998. T. Henzinger et al.
- Runtime Verification with State Estimation. RV 11. S. Stoller et. al -

- Runtime Verification of Stochastic, Faulty Systems. RV 10. M. Wilcox, B Williams -
- Monitoring Temporal Properties of Stochastic Systems. VMCAI 2008. A. Sistla, A.R. Srinivas -
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Algorithmic Approach

Trace length Number of beliefs

Too expensive
Needs to track
exponential number of beliefs.
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Algorithmic Approach

ST Filtering with Unrolling with
Filtering Convex Hull Model checking
Too expensive Only tracks vertices Unroll MDP by
Needs to track of the convex hull. the length of the trace then compute
exponential number of beliefs. Reduces number of beliefs conditional reachability probability.

dramatically Runs in polynomial time

- Algorithmic analysis of nonlinear hybrid systems. IEEE Trans. Autom Control 1998. T. Henzinger et al.
- Runtime Verification with State Estimation. RV 11. S. Stoller et. al -

- Runtime Verification of Stochastic, Faulty Systems. RV 10. M. Wilcox, B Williams -
- Monitoring Temporal Properties of Stochastic Systems. VMCAI 2008. A. Sistla, A.R. Srinivas -
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Algorithmic Approach

Filtering with
Convex Hull

Only tracks vertices

of the convex hull.
Reduces number of beliefs
dramatically

Based on a geometric interpretation
of distributions

21



Convex-hull Forward Filtering

ldea:
- Interpret a belief as a point in R

- Compute vertices of convex hull

- Eliminate all interior points

S[—1

bb

1,0

3
4

FNyp-
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Number of
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N

Vertex of
convex hull

Can be

eliminated!
Point is a linear
combination of
vertices




Algorithmic Approach

Unrolling with
Model checking

Unroll MDP by
the length of the trace then compute
conditional reachability probability.
Runs in polynomial time

23



Unrolling with Model Checking

ldea:

- Incorporate risk and observation probabilities as part of the transition relation
- Unroll MDP by the length of the observation trace

- Compute maximal conditional reachability probability on unrolled MDP [C. Baier et al. TA

Polynomial in
initial MDP

1
L = {So, S1 —} '
2 Encodg.o.bservatlons bb|=2 S unroll once
f(so) = 1,r(sy) = 2 probabilities as part as - / . ,
| the transition function Normalize risk: (5(_))_: 2T (51_) — 2

24



Bench

Airport A

Airport B

Airport C

Refuel A

Refuel B

Evade |

EvadeV A

Evade V B

Experiments

MDP size

MDP

Trace length

Success rate: percentage of traces where no
monitoring step was delayed by more than 1sec

transitions
: 0 - 100 556 629
20232 106012
5 0 - 100 1460 1647
. 0 - 100 524 599
20910 114143 :
- 0 - 100 1075 1258
: 0 - 100 1000 1183
41820 308474 .
. 0 - 22 2097 2297
: 2 1473 100 325 409
45073 2431691 _
: 2 1873 100 1071 2409
. 0 _ 100 608 732
90154 0725277 ;
. 0 - 92 2171 4688
- 26 2055 98 332 363
377101 2022295 :
5 4 20524 90 1655 1891
: 26 274 100 134 241
1001 5318 :
: 26 674 100 538 671
. - 100 319 861
2161 11817 .
: 0 - 98 777 1484
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Experiments

Bench
Airport A
Airport B
Airport C
Refuel A

Refuel B

Evade |

EvadeV A

Evade V B

Success rate: percentage of traces where no
monitoring step was delayed by more than 1sec

Rate %

N
(0))

Unrolling w model checking
Rate %




Learning robust uncertainty models
Skurka, van der Maas, Junges, Torfah. AAMAS 2026



Learning monitors under uncertainty Spec

?
VE . Verdict
Monitor

B8 ..

--------------------------------------------------------------------------------------------------------------------------------

Problem Statement: Given a distribution d € Dist(X} ), a mapping p: 25 — Dist(X7,,), arisk

Sys obs

: function r: 2.,s — R,and aconstant A, learn a monitor M such that:

-------------------------------------------------------------------------------------------------------------------------------
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Learning monitors under uncertainty

Let: Vss = VEU Ve and X, 2 0bs denote the set of valuations over the variables Vs, Vobs

--------------------------------------------------------------------------------------------------------------------------------

Problem Statement: Given a distribution d € Dist(X* ), a mapping p: X% — Dist(X}

Sys Sys obs

), arisk
: function r: X — R, and a constant ), find a monitor M such that:

-------------------------------------------------------------------------------------------------------------------------------

M* € argmin Z d(gsys) ‘ M(Usys)(aobs) ' K(M(Uobs)a r(asys))
M: Tos—[0,1] ogecss

Sys

| Problem Statement: Let an ideal monitor M*, a set of admissible monitors M, and a distance
| function §: (.. — [0,1])2 — R, find a monitor M, s.t.,

obs
M € argmin 6(M*, M’)
| M’ e M



Learning monitors under uncertainty

Let: Vss = VEU Ve and X, 2 0bs denote the set of valuations over the variables Vs, Vobs

| Problem Statement: Let an ideal monitor M* a set of admissible monitors M, and a distance
| function §: (£*.. — [0,1])2 — R, find a monitor M, s.t.,

obs
M € argmin 6(M*, M’)
I M’ e M

Assume system under observation is modeled by a hidden Markov model.
Monitors over iHMMs:

- let rz‘p be a risk function defined over a specification ¥ and horizon h

- iHMM monitor: Miy(7) = maxnein En [rg(7-) | 7]

Problem Statement: Given system under observation H, and a set of iHMMs H , and a distance
function ¢: (X*.. — [0,1])* — R, find an iHMM iH, s.t.,

obs
My € arg min 5(M>|E|, MiH’)
iH eH

30



Learning interval hidden Markov models

- | xaces Learner
Simulator y j,
N J refine

System

under Observation

verdict

Interval
Learner

SoU

Trace Sampler

: Teurr
): ‘ risk interval(e, h, iH) 0

‘ {(£r, u‘l’)}teTcurr

Using a technique known by linear update of probability intervals
(LUI) (Suilen et al.), we can guarantee convergence to the ideal

monitor.

Theorem. LUl yields a sequence of iHMMs, which induces a sequence of

monitors that converges to the ideal monitor.
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Experiments

Transitions
SnL-10x10® 101 502 15 5 RQ 1: Model-based vs model-free
monitoring
evadeV-5-3 1 001 3878 10 20
evadeV-6-3(*) 2161 8 667 12 20 RQ 2: iHMM vs HMM learned
airportA-7-10-10% | 1170 5557 15 25 monitors
airportA-7-40-20 10760 56577 125 35
RQ 3: No refinement vs refinement
airportB-7-40-200) 21 520 152170 125 35

(*) — additional coarse model version
2 different stopping condition thresholds (0.001, 0.01 /0.01, 0.1)

32



RQ1: Model-based vs model-free

Robust models vs regression vs conformal prediction
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' 1 4 --&-  Refinement with no Splitting mean FNR: (AUC 0.705)
3. :'"\\ —-e- Refinement with no Splitting mean FPR: (AUC 0.187)
] i. \‘ Refinement with Splitting mean FNR: (AUC 0.703)
0.2 - 5‘ < Refinement with Splitting mean FPR: (AUC 0.191)
e NN Regression mean FNR: (AUC 0.760)
! "~.\\‘_\ Regression mean FPR: (AUC 0.164)
..... Rty “vo _ Conformal prediction mean FNR: (AUC 0.369)
0.0 - = Conformal prediction mean FPR: (AUC 0.555)
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Comparing FNR and FPR between model-based and

model-free methods - airportA-7-10-10,0 = 0.01
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RQ2:iHMM vs HMM learned monitors
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Comparing risk estimates between HMM and
IHMM monitors — evadeV-5-3,0 =0.01
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RQ2:iHMM vs HMM learned monitors

1.0 -

ldeal Monitor risks
(@)
(@0
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N

0.0 1
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HMM under (52.80%)
ot o HMM over (47.20%)

g e IHMM over (93.00%)

e IHMM under (7.00 %)

0.0 0.2 0.4 0.6 0.8 1.0
IHMM and HMM risks

Comparing risk estimates between HMM and iHMM

monitors — unlikely-15,0=0.01
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Underestimate the risk of unexplored paths
iHMM
Overestimate the risk of unexplored paths




RQ3: No refinement vs refinement

Distance to Ideal Monitor
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N\, -+—- No refinement, (Average final distance: 0.075)
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Comparing stance to Ideal Monitor between refinement
and no refinement - Coarse evadeV-6-3,0 =0.01

36

1.0 - I‘: F A T Tl e
U] __"' '...II-.
I o T e
u - -
\l \ UREAELLLE ... s B g ‘_,1-
\ - FARY
0.8 A 1 \ ¢ L
| i o | o
Loy | g3
y af J A BT Ideal FNR: (AUC 0.831)
TN 7 Py —-- Ideal FPR: (AUC 0.080)
0.6 1 ', |‘| = —- --#-  No refinement mean FNR: (AUC 0.700)
Q ‘l *l‘ :L-" e —+# - No refinement mean FPR: (AUC 0.153)
o Vo \\ i :-"' .-+ Refinement mean FNR: (AUC 0.765)
0.4 - ! .‘\\E-I-\‘:' | —-eo- Refinement mean FPR: (AUC 0.122)
' ‘\_:' \ ‘}\ bl Refinement with Splitting mean FNR: (AUC 0.768)
L ‘[ "; Refinement with Splitting mean FPR: (AUC 0.125)
: . N
] OPrriRe
. }.: ‘\ \\
0.2 1 -I-{\ “.- \
T 3 ¥\
\“ A I \*\
\\ :\ L .
- ;f ‘-\-~ H"‘. *-*\‘_‘
. 3 T y o S ] S = e
O_O_ o-o-gf-o-o ---—"'-_._'l_L_.' o i W e e e e cme —me cm em mem mem mo1
0.0 0.2 0.4 0.6 0.8 1.0

Threshold

Comparing FNR and FPR between learning with and
without refinement - Coarse evadeV-6-3,0=0.01



RQ3: No refinement vs refinement

-+-:- No refinement, (Average final distance: 0.014)
--e-- Refinement with no Splitting, (Average final distance: 0.012)
§ Refinement with Splitting, (Average final distance: 0.013)
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Comparing stance to Ideal Monitor between refinement
and no refinement - airportA-7-10-10, 0 = 0.001
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Recap of today

® Runtime monitoring under uncertainty .y
» how do we construct robust monitors over noisy data /

® Monitoring over Markov decision processes
> polynomial monitoring algorithm for MDPs

® Learning robust uncertainty models for monitoring T P s S
» model-based approaches outperform model-free approaches RNVl
» robust models allow us to maintain safety without being overly .|~ “Wessgmsem

hhhhhhhhh
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Verifying autonomous systems

System S —
— N .
Formal Verification Environment E > Does S||E satisfy ¢p? —— ((':\'e‘;) Repair
"~ Specification @ — l g -
. yes
(broof)
Environment modeling - Scalability
Challenges do not h d ' ML models have high :
we do not have gooc . IL models have high- Black-box models
models of the behaviors . dimensional input and state detecting unexpected
of agents Specifying ML tasks >P9-<> scenarios at runtime
ML tasks are not easily
formally specified
Principles Probabilistic modeling  Specification Compositional and Runtime assurance
probabilistic scenario formalisms for ML statistical verification - runtime monitoring
description languages - relational specifications methods and enforcement

- from system-level to combine compositional
component-level specs  formal methods with
statistical learning theory
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starlab.systems

Join us!

The goal of our research group is to develop theoretical foundations

and techniques for the construction of safe, reliable, and secure

Safe and Trustworthy

autonomous cyber-physical systems. Our work spans from formal

Autonomous Reasomng specification, verification, synthesis, to runtime verification.

LATEST NEWS




