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System S Property PDoes satisfy ?

Automata

modelled using

Logical formula

specified using

𝒜 φ

Model Specification

Linear

Temporal Logic

Every request is  
followed by a responseG(a ⟹ Fb)
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Automata Logical formula G(a ⟹ Fb)𝒜 φ

Model Specification

Violated Satisfied

Model Checker

Does Model satisfy 
 specification? 
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Automata Logical formula G(a ⟹ Fb)𝒜 φ

Logic to Automata 
Translation

Reachability/Liveness in 
Network of Automata

Model Specification

¬φφ 𝒜¬φ

Model Checker
   ?L(𝒜) ⊆ L(φ)

Is    empty?L(𝒜) ∩ L(φ)   𝒜 × 𝒜¬φ
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Model Checking  
for Real-time systems

Our Focus
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System S Property PDoes satisfy ?

modelled using

Logical formula

specified using

φ

Specification

Metric Interval

Temporal Logic

Every request is  
followed by a response

24/72

Local time semantics [Bengtsson et al. ’98]

p0

p1

p2

q0

q1

q2

A1 A2

a x  3 b y � 4

c c

(p0, q0)

t1 = 0, x = 0

t2 = 0, y = 0

(p1, q0)

t1 = 3, x = 3

t2 = 0, y = 0

(p0, q1)

t1 = 0, x = 0

t2 = 4, y = 4

(p1, q1)

t1 = 3, x = 3

t2 = 4, y = 4

(p1, q1)

t1 = 4, x = 4

t2 = 4, y = 4

(p2, q2)

t1 = 4, x = 4

t2 = 4, y = 4

�1 = 3
a

�2 = 4

b

�2 = 4

b
�1 = 3
a

�1 = 1

Idea: Allow each process to

elapse time independently

t1 t2 Reference clocks to measure
time elapsed in each process

Shared actions only executed
from valuations in which
processes agree on the
value of reference clocks

Synchronized valuations: reference clocks
of all the processes have the same value

within 3 time units
G(a ⟹ F<3b)<3

Model Checking for Real-time systems

Timed Automata

Automata with 
Timers

Event-clock 
Automata

Automata

Several choices!



MITL Model Checking
For Continuous semantics

For Pointwise semantics

MightyL
[Brihaye Geeraerts Ho 

Monmege ’17]

Proceeds through 

Easier to construct timed automata for these simpler formulae

Does not work for 
pointwise semantics! 

Formulae with only 
one-sided intervalsMITL formulae 


One-clock 
alternating timed 

automata
MITL formulae 
 Network of timed 

automata

[Ferrere Maler Nickovic Pnueli ’19]

Our goal: A new procedure for efficient MITL model-checking? 



Network of 
Timed Automata

MITL formula G(a ⟹ F<3b)φ

Model Specification

Efficient Translation

from MITL to automata

Model Checking for Real-time systems

Logic to Automata 
Translation

𝒜 × 𝒜¬ϕ

¬φφ 𝒜¬ϕ

Efficient Algorithms 

for Reachability/Liveness

To which  
automata?

𝒜

Reachability/Liveness in 
Network of Automata
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Generalised Timed Automata (GTA)

Specifications           

Models
Timed Automata

Automata with Timers

Event-clock Automata

Allows to use the 
features of these models


simultaneously

Efficient techniques comparable to 


state-of-the-art techniques for Timed Automata

Zones

Zone Graphs

Finite abstractions for 
Zone graphs

Direct translation from MITL to GTA
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Our Pipeline

A translation from MITL formulae to GTA 
  

A model that succinctly captures several widely used timed formalisms  
Exponentially more succinct than the current logic-automata translation

Procedure to check Reachability/Liveness for GTA 

Liveness in  
Network of Automata

Model Checker

Logic to Automata 
Translation

Reachability/Liveness in  
Network of Automata

Zone-based with similar complexity as Timed Automata procedures

A new procedure for MITL model-checking
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Timed Automata

p q r
a b

c

[Alur Dill ’89]

x ≥ 4
y := 0

y ≥ 3
x := 0

x ≤ 2
y := 0

Clocks X = {x, y}

Guard
Reset
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Generalized Timed Automata (GTA)
We enrich the timing constructs

0
−∞ +∞

Future clocks History clocks

Richer syntax on transitions

+

[AGGJS ’23]



Generalising Clocks, Event clocks, Timers 
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−∞ +∞

Future clocks 

Guards:  


Release: sets y to an arbitrary value in 


 

Generalizes timers and 

predicting clocks (for specifications)

−5 ≤ y ≤ − 2

[−∞,0]

< [y]; − 5 ≤ y ≤ − 2 >

History clocks 

Guards:  


Reset: sets x to 0.


 

Generalizes standard clocks and 
recording clocks (for specifications)

2 ≤ x ≤ 5

< 2 ≤ x ≤ 5; [x] >

[AGGJS ’23]



16

Generalising Transitions 

p q
a

x ≥ 4
y := 0

Instantaneous Timed Programs

p q
a

x = 0; [y]; y = z − 1; [z]; z = y

Guard followed by Reset

Arbitrary interleaving of guards and 
clock-transformations

Allows succinct modelling!
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A run of GTA 









p
x = 3

y = − 10
z = − 7

δ = 2 






p
x = 5

y = − 8
z = − 5

δ = 5

a

x ≥ 2; [y]; − 5 ≤ y ≤ − 2








q
x = 5

y = − 3
z = − 5








q
x = 8
y = 0

z = − 2

δ = 3 b

p q
a

x ≥ 2; [y]; − 5 ≤ y ≤ − 2
r

b
y = 0

p q
[y]; y ∈ I

r
y = 0

Set  to a value in y I Validate the guess
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Motivations for our work

Towards more Determinism  

Logic to Automata translation

No time-abstract bisimulation for GTAs

Generalised Timed Automata (GTA)

A new zone-based algorithm for 
checking Büchi non-emptiness in GTAs

Uses powerful features of GTA

Exponentially more succinct than the 
state-of-the-art

Metric Interval Temporal Logic (MITL)

MITL to GTA

Improvements to Translation

Formal Verification of Real-Time Systems
Overview



Linear Temporal Logic
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p ∈ 𝖯𝗋𝗈𝗉φ :=

φ1 ∧ φ2 φ1 ∨ φ2 ¬φ

X φ

F φ

φ1 U φ2

 holds in the next positionφ

 holds eventuallyφ

 holds until  holdsφ1 φ2

s_0

s_i

s’_1

s’_2

s_1

s_2

⋮

φ1 φ2

[Pnueli ’77]
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p ∈ 𝖯𝗋𝗈𝗉φ :=
φ1 ∧ φ2 φ1 ∨ φ2 ¬φ

FI φ

φ1 UI φ2

 holds in the next positionφ

 holds eventuallyφ

 holds until  holdsφ1 φ2

XI φ

Linear Temporal LogicMetric Interval s_0

s_i

s’_1

s’_2

s_1

s_2

⋮
t ∈ I

φ1 φ2

[Alur Feder Henzinger ’96]

No punctual constraints:  is not singletonI
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Model Checking for Real-time systems 
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MITL to GTA translation
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Extending 


LTL to Automata translation 


using 


the powerful features of GTA

Next

“Prediction is difficult, especially when dealing with the future”
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 - Next position is labelled by Xp p

p ¬p p p p ¬p p ¬p ⋯
0 1 1 1 10 0 ⋯

Warmup: LTL to NFA

Y - next event is a -eventp

N - next event is not a -eventp

Y N

p ∣ 1 ¬p ∣ 0

p ∣ 0

¬p ∣ 1
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p q
[x]; x ∈ I

r
x = 0

Set  to a value in x I Validate the guess

Predictions using Future ClocksCentral idea:

MITL to GTA translation [Akshay Gastin G. Srivathsan ’24]



LTL to NFA
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MITL to GTA

Y - next position is labelled by p
N - next event is not labelled by p

Future clock  - predicts the time to next event    x

When next event is -event, check if p x ∈ I

Y N

p ∣ 1 ¬p ∣ 0

p ∣ 0

¬p ∣ 1

Y N

x = 0; [x]; x ∉ I
p x = 0; [x]; x ∈ I ∣ 1

∣ 0
x = 0; [x]¬p ∣ 0

x = 0; [x]p ∣ 0

x = 0; [x]; x ∉ I¬p
x = 0; [x]; x ∈ I ∣ 1

∣ 0

 - Next position is labelled by Xp p

p ¬p p p p ¬p p ¬p ⋯
0 1 1 1 10 0 ⋯

 -  Next position is labelled by  
and is within interval [3,5]

X[3,5]p p



26

MITL to GTA

Y N

x = 0; [x]; x ∉ I
p x = 0; [x]; x ∈ I ∣ 1

∣ 0
x = 0; [x]¬p ∣ 0

x = 0; [x]p ∣ 0

x = 0; [x]; x ∉ I¬p
x = 0; [x]; x ∈ I ∣ 1

∣ 0

 -  Next position is labelled by  
and is within interval [3,5]

X[3,5]p p

Translation to TA?

Predictions are stored in statesPredictions are handled using future clocks

2 Generalized Timed Automata: Liveness and MITL Model Checking

(X) and Until (U) extended with timing intervals — for instance, X[a,b]p says that the next
event is a p and it occurs within a delay ◊ œ [a, b]. Model checking for MITL is known to be
EXPSPACE-complete [3]. This has led to the study of “e�cient” conversions from MITL to
timed automata, with each new construction aiming to make the automata more succinct.
Our work is another step in this direction.

There are two ways to interpret MITL formulae: over (continuous) timed signals [3, 31, 17]
or (pointwise) timed words [5, 39, 11]. Since the current timed automata tools work with
timed words, we stick with the pointwise semantics. The state-of-the-art for MITL-to-
TA is based on an initial translation of MITL to one-clock Alternating Timed Automata
(OCATA) [33]. It has been shown that these OCATA can be converted to a network of timed
automata [9, 10]. The tool MightyL [11] implements the entire MITL-to-TA translation.
One of the di�culties in the MITL-to-TA translation is the inherent mismatch between the
logic and the automaton in the way timing constraints are enforced. A future modality
declares that a certain event takes place at a certain timing distance, in the future. In a timed
automaton, clocks measure time elapsed since some event in the past and check constraints
on these values. To implement a future modality, the automaton needs to make a prediction
about the event and verify that the prediction is indeed true. Therefore, each prediction
typically resets a clock and stores a new obligation in the state. The automaton needs to
discharge these obligations at the right times in the future.

X p ¬ X p

p | 1 ¬p | 0

p | 0

¬p | 1

X p ¬ X p

p | † ¬p | 0

p | 0

¬p | †

XI p

¬ X p

X p ∧ ¬ XI p

p π1 | 1

¬p | 0

p π2 | 0

p π1 | 0

¬p [x] | 1

p π2 | 0

¬p [x] | 0

p

π1

| 0

p

π2

| 1

Figure 1 (top left) Büchi transducer (with outputs) for LTL formula X p (right) Timed transducer
with clock x for MITL formula XI p; fi1 := x œ I; [x], fi2 := x /œ I; [x] (bottom left) a hypothetical
transducer with a variable ◊ that predicts time to next action; † := ◊ œ I ? 1 : 0.

Figure 1 (top left) shows an automaton with outputs for the LTL formula X p. On an
infinite word w1w2 . . . (where each wi is a subset of atomic propositions) the automaton
outputs 1 at wi i� wi+1 contains p. While reading wi, the automaton needs to guess whether
p œ wi+1 or not. Depending on the guess, it stores an appropriate obligation. This is reflected
in the states and transitions: transitions with output 1 go to a state X p which can only read
p next, whereas those with output 0 go to ¬ X p which can only read ¬p. The X p and ¬ X p
can be seen as obligations that the automaton has to discharge from the state.

Now, let us consider a timed version XI p interpreted on timed words. An automaton
for XI p needs to guess whether the next letter is a p and if so, whether it appears within ◊
time units for some ◊ œ I. Figure 1 (bottom left) represents a hypothetical automaton that
implements this idea: assuming it has access to a variable ◊ which contains the time to the
next event, the output should depend on whether ◊ œ I or not. This is exactly what the
if-then-else condition † does: if ◊ œ I output 1, else output 0. Classical timed automata do
not have direct access to ◊. They implement this idea di�erently, by making use of extra
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MITL to GTA translation 

𝖴[2,3]

𝖴[4,5] 𝖷[5,7]

𝖷[1,2] s

q r

∧

p

(𝖷[1,2] p 𝖴[4,5] s) 𝖴[2,3] (𝖷[5,7] (q ∧ r))

Each sub-formula

Each component 

Reads the outputs produced by children

Feeds its output to its parents

Produces a network of GTAs

GTA
(with outputs)
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No time-abstract bisimulation for GTAs
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What next?

Determinism where possible

Sharing of information between components

tool implementing the pipelineTEMPORA

Controlled non-determinism otherwise

Improvements to our translation

Extensions to allow more modalities
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Extending our Translation 
 T MITL+p

Past operators

Punctual intervals 
at outermost level

Not considered in earlier translations

YI φ  holds in the previous positionφ

(𝖷[1,2] p 𝖴[4,5] s) 𝖴[2,2] (𝖷[5,7] (q ∧ r))𝖴[2,2]

φ1 S φ2  holds since  holdsφ1 φ2φ1 φ2SI
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Improvements to Translation 
 T

detMITL+pA Deterministic Fragment

Outer operator: Any 

Inner operators: past only

Future/past
(even punctual)

Obtained network is 
deterministic

Linear-time translation

Beyond Determinism Limit non-determinismMITL+pFull
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Improvements to Translation 
 T

Optimise size of resultant GTA network

Clocks

Predictions

Components/Automata

MITL+p

Sharing of information
Reduced non-deterministic 

branching

More compact networks
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MITL to GTA translation 

𝖴[2,3]

𝖴[4,5] 𝖷[5,7]

𝖷[1,2] s

q r

∧

p

(𝖷[1,2] p 𝖴[4,5] s) 𝖴[2,3] (𝖷[5,7] (q ∧ r))

Each sub-formula

Each component 

Reads the outputs produced by children

Feeds its output to its parents

Produces a network of GTAs

GTA
(with outputs)



MITL to GTA translation

Future clock  - predicts the time to next event    x

When next event is -event, check if p x ∈ I

Y N

x = 0; [x]; x ∉ I
p x = 0; [x]; x ∈ I ∣ 1

∣ 0
x = 0; [x]¬p ∣ 0

x = 0; [x]p ∣ 0

x = 0; [x]; x ∉ I¬p
x = 0; [x]; x ∈ I ∣ 1

∣ 0

 -  Next position is labelled by  
and is within interval [3,5]

X[3,5]p p

Y N

x = 0; [x]; x ∉ I
p x = 0; [x]; x ∈ I ∣ 1

∣ 0
x = 0; [x]¬p ∣ 0

x = 0; [x]p ∣ 0

x = 0; [x]; x ∉ I¬p
x = 0; [x]; x ∈ I ∣ 1

∣ 0



Future clock  - predicts the time to next event    x

When next event is -event, check if p x ∈ I

Y N

x = 0; [x]; x ∉ I
p x = 0; [x]; x ∈ I ∣ 1

∣ 0
x = 0; [x]¬p ∣ 0

x = 0; [x]p ∣ 0

x = 0; [x]; x ∉ I¬p
x = 0; [x]; x ∈ I ∣ 1

∣ 0

 -  Next position is labelled by  
and is within interval [3,5]

X[3,5]p p

N

¬p

p

p

𝒜𝖷

s

x = 0; [x]

𝒜𝖭𝖾𝗑𝗍

∧𝗈𝗎𝗍𝖷 :=

Original Optimised

Allows to use only one clock
for all Next operators

Y

¬p

Untimed 
part

Timed 
part

𝒜𝖷 . state = 𝖸 −𝒜𝖭𝖾𝗑𝗍 . x ∈ I

MITL to GTA translation
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Experimental Evaluation 
 T

a tool implementing the pipelineTEMPORA

Comparison with MightyL + UPPAAL

MightyL + OPAAL

for finite words

for infinite words

Built on top of TChecker

Optimised MITL-to-GTA translation

GTA reachability/liveness 
+
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Experimental Evaluation 
 T
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Model Checking for Real-time systems 
Motivations for our work

Towards more Determinism  

Logic to Automata translation

Generalised Timed Automata (GTA)

Uses powerful features of GTA

Exponentially more succinct than the 
state-of-the-art

Metric Interval Temporal Logic (MITL)

MITL to GTA

Improvements to Translation

Formal Verification of Real-Time Systems
Overview

Extending our translation - MITL+p

Faster translation for subclass detMITL+p

Maximising determinism
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A new procedure for 
MITL model-checking

MITL Model-checking using GTA

A new model that unifies the features of several timed formalisms

 Timed Automata, Event Clock Automata, Timers

Efficient Procedure to check reachability/liveness for GTAs

Decides reachability/liveness for various models

Translation from MITL formulae to GTA

A direct and succinct translation

+

+ TEMPORA

GTA-based tool


