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Learning-enabled and neural control

e Reinforcement learning

e Other learning-based methods (e.g. supervised and unsupervised learning)

e Program synthesis (e.g. programmatic RL)

Safe autonomy requires correctness guarantees )




How to learn correct neural controllers?




SMU Classification: Restricted

How to learn correct neural controllers?

Constrained reinforcement learning (RL)

+ Maximize expected reward in MDPs under safety constraints
(constrained MDP formalism)

+ Focus on satisfying safety constraints in expectation

+ Recent work on almost-sure constraints (Sootla et al.) and

VaR/CVaR constraints (Jiang et al.)

- No guarantees on safety constraint satisfaction
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Neural control with certificates




Neural control with certificates
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Neural controller + neural certificate
(both neural networks)
_—
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Learned and verified
controller and certificate

Idea: Learn controller + certificate for the specification
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Machine Formal

learning + methods

Formally verified learned controllers
(A certificate is a locally checkable witness of correctness)
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(Lyapunov Function\ 4 Barrier Function \ (Contraction Metric\

Certifies stability of a Certifies invariance of Certifies ability to track
fixed point a region arbitrary trajectories

"
,
L4
¢,
¢,
. ’ .
. 'l / .
0' ¢ y
. ¢ .
. 4
¢,
,
,
'
’
L4
L4

\ N\

\_ )

Learning of controllers with classical control theory certificates
+ verification by reduction to SMT-solving

*Image taken from: Dawson, Gao, Fan. Safe Control with Learned Certificates: A Survey of Neural Lyapunov,
Barrier, and Contraction Methods for Robotics and Control. IEEE Transactions on Robotics



SMU Classification: Restricted

How to learn correct controllers?

Constrained reinforcement learning (RL)

+ Maximize expected reward in MDPs under safety constraints
(constrained MDP formalism)

+ Focus on satisfying safety constraints in expectation

+ Recent work on almost-sure constraints (Sootla et al.) and

VaR/CVaR constraints (Jiang et al.)

- No guarantees on safety constraint satisfaction

Neural control with certificates

+ Certificates act as formal proof of correctness

+ Formal certificates for reachability, safety, reach-avoidance
+ Formal guarantees by reducing verification to SMT-solving
(Chang et al.; Abate et al.; Sankaranarayanan et al.; Fan et al.)

- Consider deterministic systems, no stochastic uncertainty
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What should be the certificates for continuous stochastic systems?

How to learn and verify these new certificates as neural networks?
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A Learner-verifier Framework for

Neural Stochastic Control and Verification with Certificates
[AAAI'22, AAAI'23, NeurlPS’23, ATVA’23, TACAS'23, AAAI'25, CAV’25]

Joint work with Mathias Lechner, Tom Henzinger, Krishnendu Chatterjee
Matin Ansaripour, Abhinav Verma, Emily Yu

11
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Requirements for neural controller synthesis

1. Full automation

2. General continuous systems
(classical automated control theory methods restricted to polynomial systems)

3. Hard formal guarantees
(sampling, numerical methods, testing provide soft correctness guarantees)

4. Long or even infinite-time horizon
(sampling, numerical methods, testing only applicable to finite horizon problems)

5. Consideration of stochastic environment uncertainty
(formal guarantees require system model, but the model may be imprecise or contain noise)

12
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Model: Stochastic dynamical system
(a.k.a. infinite-state discrete-time MDP)

Stochastic disturbance X
o d\/ =
4 N\ 4 I
Stochastic dynamical R e
fystem controller T
Xey1 = f(Xp U ’
Uy = 1(x¢)

Given: Initial region X, ,specification ¢ defining a set of “good” traces, probability threshold p € [0,1]

Control problem: Neural controller + certificate that guarantee P¥_[xo, x1, X2, ... E ¢] = p for all x, € X,

Verification problem: Neural certificate that guarantees Py [xo, X1, Xy, ... F ¢] = p for all x, € X,
13
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Most of this talk: Reach-avoid specifications

XN X

%

Reachability = reach the target set of states
Safety = do not reach the unsafe set of states
Reach-avoidance = reach the target set while avoiding the unsafe set of states

14
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Research questions that need to be answered

What should be the certificates for continuous stochastic systems?

Supermartingale certificates

How to learn and verify these new certificates as neural networks?

Abstract interpretation + Lipschitz analysis
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What are {super,sub}martingales?

Martingale — stochastic process constant in expectation

Supermartingale — stochastic process decreasing in expectation El

Submartingale — stochastic process increasing in expectation

Bl

Bl

Xn+1

Xn+1

_Xn+1
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What are {super,sub}martingales?

Martingale — stochastic process constant in expectation

[Supermartingale]— stochastic process decreasing in expectation El

Submartingale — stochastic process increasing in expectation

Bl

Bl

Xn+1

Xn+1

_XTL+1
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Martingale certificates in stochastic control

Ranking supermartingales (RSMs) for probability 1 reachability

[Kushner, Transactions on Automatic Control 1966, Chakarov, Sankaranarayanan, CAV 2013]
A measurable function I/: X — IR for a target set X; such that: > e > €

1. Nonnegativity. V(x) = O forx € X \ !
2. Strict expected decrease. A€ > 0s.t. E,,q[V(f (x, m(x),w))] < V(x) — € for x € X\ X; =0

Stochastic barrier functions for probability p € [0,1] safety v=1/1-p)
[Prajna, Jadbabaie, Pappas. CDC 2004]

=0
Automated synthesis of polynomial supermartingale certificates L
Probability p € [0,1] safety in stochastic control v ‘ v
[Prajna, Jadbabaie, Pappas. CDC 2004]
0

>

v VL

Probability 1 reachability for probabilistic program verification
[Chakarov, Sankaranarayanan, CAV 2013]

Probability p € [0,1] reachability for probabilistic program verification

[Chatterjee, Novotny, Zikelic, POPL 2017; Chatterjee, Goharshady, Meggendorfer, Zikelic, CAV 2022] 8
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Reach-avoid supermartingale

RASM is a measurable function V: X — R such that: ,

L nitial ) |
1. Nonnegativity. V(x) = 0 for each x € X.

=€ =€

2. Initial condition. V' (x) < 1 for each initial state x € X,. '

3. Safety condition. V(x) = 1/(1 — p) for each unsafe state x € X,,.

4. Strict expected decrease. There exists € > O suchthat V(x) = E, _4[V(f (x,m(x),w)] + €
forx € X\X; atwhichV(x) < 1/(1 — p).

19
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Reach-avoid supermartingale
RASM is a measurable function V: X — R such that: 1 V=1
Initial
1. Nonnegativity. V(x) = 0 for each x € X.

=€ =€

2. Initial condition. V' (x) < 1 for each initial state x € X,. '

3. Safety condition. V(x) = 1/(1 — p) for each unsafe state x € X,,.

4. Strict expected decrease. There exists € > O suchthatV(x) = E, 4[V(f(x,m(x),w)] + €
forx € X\X; atwhichV(x) < 1/(1 — p).

Theorem (Soundness). Suppose that the system admits a RASM. Then
P%, [ReachAvoid(X., X,)] = p forall x € X, .

20
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V=1/1-p)

Reach-avoid supermartingale

=€| =€ =€
RASM is a measurable function I/: X — R such that: | o
1. Nonnegativit
| y a X =€ =€

2. Initial c n nai\x € ! !

RASMS U ° °
3. Safety c| rgnking sup safe state x € X,.

a

4. Strictexg S D suchthatV(x) = E,-4[V({f(x,t(x),w)] + €

/(x) =1/(1 —p).

Theorem (Soundness). Suppose that the system admits a RASM. Then
P%, [ReachAvoid(X., X,)] = p forall x € X, .

21



Neural control with supermartingale certificates

Neural control policy T and reach-avoid supermartingale I/

(both neural networks)
_

— T

Learner Verifier
(minimize loss)

\ //

«—

Counterexamples to v

22
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Neural control with supermartingale certificates

Neural control policy T and reach-avoid supermartingale I/

(both neural networks)
_

— I

Learner
(minimize loss)

\/

«—

Verifier

Counterexamples to v

Assumptions (needed for automation):
(1) State space X of the system is compact
(2) Dynamics function f is (Lipschitz) continuous with Lipschitz constant L¢

23
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Neural control with supermartingale certificates

Neural control policy 7t and reach-avoid supermartingale I/

(both neural networks)
_

— N

Learner
(minimize loss)

\ /

«—

Counterexamples to v

Verifier

Loss function incurs loss if Vg
violates the RASM definition

24



SMU Classification: Restricted

Learner module

Unsupervised learning task, loss function encodes defining conditions of RASMs

(Non-negativity imposed by default, by applying ReLU/softplus on neural RASM output)

L(6,v) =E£[nit(v) + L ynsateV) + L pecrease(6, V)j

Intuition: The loss function empirically encodes all RASM defining conditions. Hence,
it guides the learner to learn a neural controller that admits a neural RASM and thus
guaranteeing reach-avoidance with the desired probability.

25
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Training set: Discretization

X = hyperrectangular discretization of X
Cinjr=Xo N X
Cunsafe = Xu N X

Cdecrease™ X\(Xr U Xy)
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L(6,v) =E£Init(v) + L ynsafe(V) + L pecrease(6, V)]

Empirically enforce RASM defining conditions

Lnifv) = max {;,(x) — 1,0}
X<t init

1
Consard) = o, k.0

S mar y  WOET@.0)

. V,(x) +7-K,0))
|Cdecreage| XECG’ECI‘E&SE W1,y WN~N N v

L pecrease(0,v) =

27
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Neural control with supermartingale certificates

Neural control policy 7t and reach-avoid supermartingale I/

(both neural networks)
_

Learner

L Verifier
(minimize loss)

«—

Counterexamples to v

Discretize the state space
and use abstract
interpretation

28
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Verifier module

~ For each discretization cell:
. use interval arithmetic abstract interpretation (IAAI) [1]
N to compute bounds on the RASM over each cell

\

~—_l —

[1] Gowal et al. On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models. arXiv 2018 20
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Verifier module

For each discretization cell:
4 ™ use interval arithmetic abstract interpretation (IAAI) [1]
N to compute bounds on the RASM over each cell

\

Check Initial and Safety conditions of RASMs
over all grid cells that intersect X or X,

~—_l —

[1] Gowal et al. On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models. arXiv 2018 1
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Verifier module

For each discretization cell:
4 ™ use interval arithmetic abstract interpretation (IAAI) [1]
\ to compute bounds on the RASM over each cell

\

Check Initial and Safety conditions of RASMs
over all grid cells that intersect X or X,

~—_l —

N p
o -~ Challenge:
T~ /// How to verify the expected decrease condition?

[1] Gowal et al. On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models. arXiv 2018 2+
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Verifier module

Solution: Check a stricter condition at the centers of the discretization cells

E,-q[V,(f (X, 7o (X), w))] < VV(X)@ Lipschitz error term

33
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Expected value computation
Compute: E .4 [Vv (f(x, To(X), a)))] forafixedx € X
Problem: I/ is a neural network, so no closed form solution in general
Solution: Discretize the support of d, expand as a sum, then bound the summands via |AAI

Ep~alW(f X mg(X), w))] = 3. maxvol- supl, (X)

Cecells XeC

34
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Neural control with supermartingale certificates

Neural control policy T and reach-avoid supermartingale I/

(both neural networks)
_

— T

Learner

L Verifier
(minimize loss) l

\ // Return policy and proof

— if verification successful

Counterexamples to v

35
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Neural control with supermartingale certificates

Neural control policy T and reach-avoid supermartingale I/

(both neural networks)
_

— T

Learner

L Verifier
(minimize loss) l

\ // Return policy and proof

— if verification successful

Counterexamples to v

Centers of grid cells in which
verification fails

36



SMU Classification: Restricted

1. Counterexample guided inductive synthesis (CEGIS)

— counterexamples cell centers are added to training sets used by the learner

2. Adaptive grid refinement

— grid cells that contain spurious counterexamples are refined



SMU Classification: Restricted

Neural control with supermartingale certificates

Neural control policy T and reach-avoid supermartingale I/

(both neural networks)
_

— T

Learner

L Verifier
(minimize loss) l

\ // Return policy and proof

— if verification successful

Counterexamples to v
No policy returned

Centers of grid cells in which if timeout reached

verification fails x

Theorem (Soundness). If the algorithm outputs a control policy m, then I/ is a valid RASM
and reach-avoidance is satisfiedwith probability at least p.

38
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Formal verification of neural policies

euresieomirolseliey=r= and reach-avoid supermartingale IV

(both neural networks)
_

— N

Learner

L Verifier
(minimize loss) l

\ / Return policy and proof

— if verification successful

Counterexamples to v

Centers of grid cells in which
verification fails

39
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Repair of neural policies

Neural control policy T and reach-avoid supermartingale I/

(both neural networks)
_

Initial controller _— T

Learner

L Verifier
(minimize loss) l

v

\ // Return policy and proof

— if verification successful

Counterexamples to v

Centers of grid cells in which
verification fails

40
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Experimental evaluation

e Initialize neural network policy using 100 iterations of PPO or SAC
e Policy network: [256,256] hidden dimension with ReLU activations
e RASM network: [256,256] hidden dimension with ReLU activations

Benchmark Original tool (AAAI 2023)| WITH IMPROVEMENTS
Probability| # iterations ||Probability|# iterations
2D Linear 96.65 6 99.51 16
Inverted Pendulum 95.90 15 98.95 8
Collision avoidance 95.00 13 96.22 5
3D Linear Fail - 94.13 10
Humanoid. Fail - 69.44 32

See also: Badings et al. “Policy Verification in Stochastic Dynamical Systems Using Logarithmic Neural Certificates”. CAV 2025

41



Other learner-verifier CEGIS frameworks

42
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1. Compositional reasoning about reach-avoidance [NeurlPS'23]

2. Stability (a.k.a. co-Buchi or reach-and-stay) with prob. 1 [ATVA’23]

3. Supermartingale certificates for general omega-regular specifications [CAV'25]

43
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Compositional policy learning [NeurlPS'23]

RL algorithms struggle with long-horizon tasks and complex logical specifications
Compositional policy learning:

1.Decompose complex logical specifications into simpler subtasks

2.Solve subtasks

3.Compose subtask policies into a global policy

Prior work: Either no formal guarantees or restricted to deterministic systems

44
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Example: Stochastic 9-rooms environment

Goal: Move from green to purple Challenge: End-to-end policy Solution: Decompose the task
without hitting a wall hard to formally verify into simpler subtasks

45
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Compositional policy learning problem

Given: Stochastic dynamical system, SpectRL specification ¢, probability p € [0,1]

(SpectRL [1,2] = all boolean and sequential compositions of reach-avoid tasks)

Goal: Learn compositional policy that satisfies specification ¢ with probability > p

(compositional policy = policies for a subset of edges that together solve the task)

[1,2] Jothimurugan, Bansal, Alur, Bastani. NeurlPS 2019, NeurlPS 2022

46
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Outline of our approach

1. High-level planning: Decompose the specification into a graph of reach-avoid subtasks

2. Low-level policy learning: Learn policies + reach-avoid supermartingales for subtasks

( ) On-demand low-level policy learning

3. Composition: Traverse the graph to compose low-level policies into a global policy,
(while composing formal guarantees provided by formal certificates)

e 0

7

47
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4 R

Neural control design

(Correct-by-construction design

\via learner-verifier Ioop)J

-

U

Safe deployment

with certificates)

N

(Monitoring and shielding

J

48



SMU Classification: Restricted

Runtime monitoring in black-box systems [AAAI’25]

Neural control policy 7T and certificate V

(both neural networks)
B

— D

Learner
(minimize loss)

Verifier

Possible in the black-box setting -« Not possible in the black-box setting
Counterexamples to v

How to certify correctness of learned controllers and certificates?

How to repair them if they are incorrect?

49
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Runtime monitoring in black-box systems [AAAI’25]

Neural control policy 7T and certificate V

(both neural networks)
_

— D

Learner
(minimize loss)

Monitor

4—_

Counterexamples to v

Monitor certificate condition violations
— Use certificate violations as new training data
— Repair by re-learning

50
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Runtime monitoring in black-box systems [AAAI’25]

Initialized #Di\l = B81’{7 .E)Z(:) N??S(E;%) ) Drone Environment [1]
Baseline 878 - - (Navigate a drone amon
CertPM 548 100.00 | 90.66 1 09a ?, ther drones) 9
PredPM [0,0.-1] 146 100.00 90.11

PredPM [0,1,-5] 355 100.00 90.12 8D encodin

PredPM 12201 | 1000 100.00 | 91.67 9

Initialized: Neural controller and barrier certificate learned via SABLAS [1]
Baseline: Monitor and repair only with hard safety violations

CertPM + PredPM: Monitor and repair with hard safety violations + certificate violations

[1] Qin et al. “SABLAS: Learning Safe Control for Black-box Dynamical Systems”. IEEE Robotics and Automation Letters 2022 51
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Neural control under richer specifications (omega-regular specifications) [CAV’25]

Scalability challenge [Work in progress]

Compositional reasoning with respect to state space and specification [NeurlPS’23]

Runtime monitoring and shielding of neural controllers [AAAI'25, TOSEM'26]
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¢ SMU "
SINGAPORE MANAGEMENT Open pOSItI Ons

UNIVERSITY

lMuItipIe PhD positions in computer science (fully funded)

'Multiple Visiting Research Student positions, 6 months

Possible topic include (but not limited to):

* Formal verification and synthesis in Markov models
* Probabilistic program verification

e Certification of neural control systems

* Runtime monitoring and safeguarding

e Safe reinforcement learning

* Runtime monitoring and safeguarding of LLM agents

Contact: dzikelic@smu.edu.sg
More details: https://djordjezikelic.github.io/openings/
PhD application deadline: Jan 31, 2026

School of
Computing and
Information Systems

CSRankings (2020-2025)
#57 in general CS,
#3 in software engineering, #25 in Al



mailto:dzikelic@smu.edu.sg
https://djordjezikelic.github.io/openings/

. Full automation

SMU Classification: Restricted

Conclusion

Neural network policy  and supermartingale certificate I/
(both neural networks)

— T

Learner
(minimize loss)

Verifier

Counterexamples to v

. General continuous systems

Safe autonomy
(towards guaranteed safe Al)

. Hard formal guarantees

. Long or even infinite-time horizon

. Consideration of stochastic environment uncertainty
54
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