
Neural Control with Certificates
for Safe Autonomy

Djordje Zikelic
Singapore Management University

QuantFormal @ FSTTCS 2025

1

● Reinforcement learning

● Other learning-based methods (e.g. supervised and unsupervised learning)

● Program synthesis (e.g. programmatic RL)

Learning-enabled and neural control

Safe autonomy requires correctness guarantees
2

How to learn correct neural controllers?

3

How to learn correct neural controllers?

4

Constrained reinforcement learning (RL)

+ Maximize expected reward in MDPs under safety constraints
(constrained MDP formalism)

+ Focus on satisfying safety constraints in expectation
+ Recent work on almost-sure constraints (Sootla et al.) and
VaR/CVaR constraints (Jiang et al.)

- No guarantees on safety constraint satisfaction

How to learn correct neural controllers?

5

Neural control with certificatesConstrained reinforcement learning (RL)

+ Maximize expected reward in MDPs under safety constraints
(constrained MDP formalism)

+ Focus on satisfying safety constraints in expectation
+ Recent work on almost-sure constraints (Sootla et al.) and
VaR/CVaR constraints (Jiang et al.)

- No guarantees on safety constraint satisfaction

Neural control with certificates

Learner

Neural controller + neural certificate

(both neural networks)

Counterexamples

Verifier

Learned and verified
controller and certificate

6

Idea: Learn controller + certificate for the specification

7

Machine
learning

Formal
methods+

=
Formally verified learned controllers

(A certificate is a locally checkable witness of correctness)

Some examples of certificates

8

*Image taken from: Dawson, Gao, Fan. Safe Control with Learned Certificates: A Survey of Neural Lyapunov,
Barrier, and Contraction Methods for Robotics and Control. IEEE Transactions on Robotics

Learning of controllers with classical control theory certificates
+ verification by reduction to SMT-solving

How to learn correct controllers?

9

Neural control with certificates

+ Certificates act as formal proof of correctness
+ Formal certificates for reachability, safety, reach-avoidance
+ Formal guarantees by reducing verification to SMT-solving
(Chang et al.; Abate et al.; Sankaranarayanan et al.; Fan et al.)

- Consider deterministic systems, no stochastic uncertainty

Constrained reinforcement learning (RL)

+ Maximize expected reward in MDPs under safety constraints
(constrained MDP formalism)

+ Focus on satisfying safety constraints in expectation
+ Recent work on almost-sure constraints (Sootla et al.) and
VaR/CVaR constraints (Jiang et al.)

- No guarantees on safety constraint satisfaction

What is missing?

10

What should be the certificates for continuous stochastic systems?

How to learn and verify these new certificates as neural networks?

Theory

Automation

Joint work with Mathias Lechner, Tom Henzinger, Krishnendu Chatterjee

Matin Ansaripour, Abhinav Verma, Emily Yu

11

A Learner-verifier Framework for
Neural Stochastic Control and Verification with Certificates
[AAAI’22, AAAI’23, NeurIPS’23, ATVA’23, TACAS’23, AAAI’25, CAV’25]

Requirements for neural controller synthesis

1. Full automation

2. General continuous systems
(classical automated control theory methods restricted to polynomial systems)

3. Hard formal guarantees
(sampling, numerical methods, testing provide soft correctness guarantees)

4. Long or even infinite-time horizon
(sampling, numerical methods, testing only applicable to finite horizon problems)

5. Consideration of stochastic environment uncertainty
(formal guarantees require system model, but the model may be imprecise or contain noise)

12

Given: Initial region 𝑋0 ,specification 𝜙 defining a set of “good” traces, probability threshold 𝑝 ∈ 0,1

Control problem: Neural controller + certificate that guarantee ℙ𝑥0
𝜋 [𝑥0, 𝑥1, 𝑥2, … ⊧ 𝜙] ≥ 𝑝 for all 𝑥0 ∈ 𝑋0

Verification problem: Neural certificate that guarantees ℙ𝑥0
𝜋 [𝑥0, 𝑥1, 𝑥2, … ⊧ 𝜙] ≥ 𝑝 for all 𝑥0 ∈ 𝑋0

Stochastic dynamical

system
𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡, 𝑤𝑡)

Neural network

controller 𝜋

𝑥𝑡

𝑢𝑡 = 𝜋(𝑥𝑡)

13

Model: Stochastic dynamical system
(a.k.a. infinite-state discrete-time MDP)

Stochastic disturbance

𝑤𝑡 ∼ 𝑑

Most of this talk: Reach-avoid specifications

𝑋𝑡

𝑋𝑢

𝑋𝑢

14

Reachability = reach the target set of states

Safety = do not reach the unsafe set of states

Reach-avoidance = reach the target set while avoiding the unsafe set of states

Research questions that need to be answered

15

What should be the certificates for continuous stochastic systems?

How to learn and verify these new certificates as neural networks?

Theory

Automation

Supermartingale certificates

Abstract interpretation + Lipschitz analysis

What are {super,sub}martingales?

Martingale – stochastic process constant in expectation

Supermartingale – stochastic process decreasing in expectation

Submartingale – stochastic process increasing in expectation

16

𝔼[𝑋𝑛+1|𝑋𝑛] ≥ 𝑋𝑛

𝔼[𝑋𝑛+1|𝑋𝑛] ≤ 𝑋𝑛

𝔼[𝑋𝑛+1|𝑋𝑛] = 𝑋𝑛

What are {super,sub}martingales?

Martingale – stochastic process constant in expectation

Supermartingale – stochastic process decreasing in expectation

Submartingale – stochastic process increasing in expectation

17

𝔼[𝑋𝑛+1|𝑋𝑛] ≥ 𝑋𝑛

𝔼[𝑋𝑛+1|𝑋𝑛] ≤ 𝑋𝑛

𝔼[𝑋𝑛+1|𝑋𝑛] = 𝑋𝑛

Martingale certificates in stochastic control

18

Stochastic barrier functions for probability 𝑝 ∈ [0,1] safety
[Prajna, Jadbabaie, Pappas. CDC 2004]

𝑉 = 1/(1 − 𝑝)

𝑉 = 1

𝑉 = 0

Unsafe

Initial

≥ 0 ≥ 0 ≥ 0

≥ 0 ≥ 0

Ranking supermartingales (RSMs) for probability 1 reachability
[Kushner, Transactions on Automatic Control 1966, Chakarov, Sankaranarayanan, CAV 2013]

A measurable function 𝑉: 𝑋 → ℝ for a target set 𝑋𝑡 such that:

1. Nonnegativity. 𝑉(𝑥) ≥ 0 for 𝑥 ∈ 𝑋

2. Strict expected decrease. ∃𝜖 > 0 s.t. 𝔼𝑤∼𝑑[𝑉(𝑓(𝑥, 𝜋(𝑥), 𝑤))] ≤ 𝑉(𝑥) − 𝜖 for 𝑥 ∈ 𝑋\𝑋𝑡
𝑉 = 0

Initial

≥ 𝜖 ≥ 𝜖

Automated synthesis of polynomial supermartingale certificates
Probability 𝑝 ∈ [0,1] safety in stochastic control
[Prajna, Jadbabaie, Pappas. CDC 2004]

Probability 1 reachability for probabilistic program verification
[Chakarov, Sankaranarayanan, CAV 2013]

Probability 𝑝 ∈ [0,1] reachability for probabilistic program verification
[Chatterjee, Novotny, Zikelic, POPL 2017; Chatterjee, Goharshady, Meggendorfer, Zikelic, CAV 2022]

RASM is a measurable function 𝑉: 𝑋 → ℝ such that:

1. Nonnegativity. 𝑉(𝑥) ≥ 0 for each 𝑥 ∈ 𝑋.

2. Initial condition. 𝑉(𝑥) ≤ 1 for each initial state 𝑥 ∈ 𝑋0.

3. Safety condition. 𝑉(𝑥) ≥ 1/(1 − 𝑝) for each unsafe state 𝑥 ∈ 𝑋𝑢.

4. Strict expected decrease. There exists 𝜖 > 0 such that 𝑉(𝑥) ≥ 𝔼𝜔∼𝑑[𝑉(𝑓(𝑥, 𝜋(𝑥), 𝑤)] + 𝜖
for 𝑥 ∈ 𝑋\𝑋𝑡 at which 𝑉(𝑥) ≤ 1/(1 − 𝑝).

𝑉 = 1/(1 − 𝑝)

𝑉 = 1

𝑉 = 0

Unsafe

Initial

Reach-avoid supermartingale

19

≥ 𝜖 ≥ 𝜖 ≥ 𝜖

≥ 𝜖 ≥ 𝜖

RASM is a measurable function 𝑉: 𝑋 → ℝ such that:

1. Nonnegativity. 𝑉(𝑥) ≥ 0 for each 𝑥 ∈ 𝑋.

2. Initial condition. 𝑉(𝑥) ≤ 1 for each initial state 𝑥 ∈ 𝑋0.

3. Safety condition. 𝑉(𝑥) ≥ 1/(1 − 𝑝) for each unsafe state 𝑥 ∈ 𝑋𝑢.

4. Strict expected decrease. There exists 𝜖 > 0 such that 𝑉(𝑥) ≥ 𝔼𝜔∼𝑑[𝑉(𝑓(𝑥, 𝜋(𝑥), 𝑤)] + 𝜖
for 𝑥 ∈ 𝑋\𝑋𝑡 at which 𝑉(𝑥) ≤ 1/(1 − 𝑝).

𝑉 = 1/(1 − 𝑝)

𝑉 = 1

𝑉 = 0

Unsafe

Initial

Reach-avoid supermartingale

20

≥ 𝜖 ≥ 𝜖 ≥ 𝜖

≥ 𝜖 ≥ 𝜖

Theorem (Soundness). Suppose that the system admits a RASM. Then
ℙ𝑥0
𝜋 [ReachAvoid(𝑋𝑡 , 𝑋𝑢)] ≥ 𝑝 for all 𝑥 ∈ 𝑋0 .

RASM is a measurable function 𝑉: 𝑋 → ℝ such that:

1. Nonnegativity. 𝑉(𝑥) ≥ 0 for each 𝑥 ∈ 𝑋.

2. Initial condition. 𝑉(𝑥) ≤ 1 for each initial state 𝑥 ∈ 𝑋0.

3. Safety condition. 𝑉(𝑥) ≥ 1/(1 − 𝑝) for each unsafe state 𝑥 ∈ 𝑋𝑢.

4. Strict expected decrease. There exists 𝜖 > 0 such that 𝑉(𝑥) ≥ 𝔼𝜔∼𝑑[𝑉(𝑓(𝑥, 𝜋(𝑥), 𝑤)] + 𝜖
for 𝑥 ∈ 𝑋\𝑋𝑡 at which 𝑉(𝑥) ≤ 1/(1 − 𝑝).

𝑉 = 1/(1 − 𝑝)

𝑉 = 1

𝑉 = 0

Unsafe

Initial

Reach-avoid supermartingale

21

≥ 𝜖 ≥ 𝜖 ≥ 𝜖

≥ 𝜖 ≥ 𝜖

RASMs unify and generalize

ranking supermartingales and

stochastic barrier functions

Theorem (Soundness). Suppose that the system admits a RASM. Then
ℙ𝑥0
𝜋 [ReachAvoid(𝑋𝑡 , 𝑋𝑢)] ≥ 𝑝 for all 𝑥 ∈ 𝑋0 .

Learner

(minimize loss)
Verifier

Neural control policy 𝜋 and reach-avoid supermartingale 𝑉
(both neural networks)

Counterexamples to 𝑉

22

Neural control with supermartingale certificates

Learner

(minimize loss)
Verifier

Neural control policy 𝜋 and reach-avoid supermartingale 𝑉
(both neural networks)

Counterexamples to 𝑉

23

Neural control with supermartingale certificates

Assumptions (needed for automation):
(1) State space 𝑋 of the system is compact
(2) Dynamics function 𝑓 is (Lipschitz) continuous with Lipschitz constant 𝐿𝑓

Learner

(minimize loss)
Verifier

Neural control policy 𝜋 and reach-avoid supermartingale 𝑉
(both neural networks)

Counterexamples to 𝑉

24

Neural control with supermartingale certificates

Loss function incurs loss if 𝑉𝜃
violates the RASM definition

Unsupervised learning task, loss function encodes defining conditions of RASMs

(Non-negativity imposed by default, by applying ReLU/softplus on neural RASM output)

Learner module

ℒ(𝜃, 𝜈) = ℒInit(𝜈) + ℒUnsafe(𝜈) + ℒDecrease(𝜃, 𝜈)

Intuition: The loss function empirically encodes all RASM defining conditions. Hence,
it guides the learner to learn a neural controller that admits a neural RASM and thus
guaranteeing reach-avoidance with the desired probability.

25

Training set: Discretization

𝑋0

𝑋𝑢

𝑋𝑡

𝑋𝑢

෨𝑋 = hyperrectangular discretization of 𝑋

𝐶init = 𝑋0 ∩ ෨𝑋

𝐶unsafe = 𝑋𝑈 ∩ ෨𝑋

𝐶decrease= ෨𝑋\(𝑋𝑇 ∪ 𝑋𝑈)

26

Loss function

ℒInit(𝜈) = 𝑚𝑎𝑥
𝐱∈𝐶init

{𝑉𝜈(𝐱) − 1,0}

ℒUnsafe(𝜈) = 𝑚𝑎𝑥
𝐱∈𝐶unsafe

{
1

1 − 𝑝
− 𝑉𝜈(𝐱), 0}

ℒDecrease(𝜃, 𝜈) =
1

|𝐶decrease|
⋅ ∑
𝐱∈𝐶decrease

(𝑚𝑎𝑥{ ∑
𝜔1,…,𝜔𝑁∼𝒩

𝑉𝜈(𝑓(𝐱, 𝜋𝜃(𝐱), 𝜔𝑖))

𝑁
− 𝑉𝜈(𝐱) + 𝜏 ⋅ 𝐾, 0})

ℒ(𝜃, 𝜈) = ℒInit(𝜈) + ℒUnsafe(𝜈) + ℒDecrease(𝜃, 𝜈)

Empirically enforce RASM defining conditions

27

Learner

(minimize loss)
Verifier

Neural control policy 𝜋 and reach-avoid supermartingale 𝑉
(both neural networks)

Counterexamples to 𝑉

28

Neural control with supermartingale certificates

Discretize the state space

and use abstract

interpretation

Verifier module

𝑋0

𝑋𝑢

𝑋𝑡

𝑋𝑢

29

Verifier module

𝑋0

𝑋𝑢

𝑋𝑡

𝑋𝑢

For each discretization cell:
use interval arithmetic abstract interpretation (IAAI) [1]
to compute bounds on the RASM over each cell

[1] Gowal et al. On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models. arXiv 2018
30

Verifier module

𝑋0

𝑋𝑢

𝑋𝑡

𝑋𝑢

Check Initial and Safety conditions of RASMs

over all grid cells that intersect 𝑋0 or 𝑋𝑢

For each discretization cell:
use interval arithmetic abstract interpretation (IAAI) [1]
to compute bounds on the RASM over each cell

[1] Gowal et al. On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models. arXiv 2018
31

Verifier module

𝑋0

𝑋𝑢

𝑋𝑡

𝑋𝑢

Check Initial and Safety conditions of RASMs

over all grid cells that intersect 𝑋0 or 𝑋𝑢

For each discretization cell:
use interval arithmetic abstract interpretation (IAAI) [1]
to compute bounds on the RASM over each cell

[1] Gowal et al. On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models. arXiv 2018
32

Challenge:
How to verify the expected decrease condition?

Verifier module

Solution: Check a stricter condition at the centers of the discretization cells

𝔼𝜔∼𝑑[𝑉𝜈(𝑓(𝐱, 𝜋𝜃(𝐱), 𝜔))] < 𝑉𝜈(𝐱) − 𝜏 ⋅ 𝐾 Lipschitz error term

33

Expected value computation

Compute: for a fixed 𝐱 ∈ 𝑋

Problem: 𝑉 is a neural network, so no closed form solution in general

Solution: Discretize the support of 𝑑, expand as a sum, then bound the summands via IAAI

𝔼𝜔∼𝑑 𝑉𝜈 𝑓 𝐱, 𝜋𝜃 𝐱 , 𝜔

𝔼𝜔∼𝑑[𝑉𝜈(𝑓(𝐱, 𝜋𝜃(𝐱), 𝜔))] ≤ ∑
𝐶∈𝑐𝑒𝑙𝑙𝑠

maxvol ⋅ 𝑠𝑢𝑝
𝐱∈𝐶

𝑉𝜈(𝐱)

34

Learner

(minimize loss)
Verifier

Neural control policy 𝜋 and reach-avoid supermartingale 𝑉
(both neural networks)

Counterexamples to 𝑉

Return policy and proof
if verification successful

35

Neural control with supermartingale certificates

Learner

(minimize loss)
Verifier

Neural control policy 𝜋 and reach-avoid supermartingale 𝑉
(both neural networks)

Counterexamples to 𝑉

Return policy and proof
if verification successful

36

Centers of grid cells in which
verification fails

Neural control with supermartingale certificates

Verifier guides the learner

1. Counterexample guided inductive synthesis (CEGIS)

— counterexamples cell centers are added to training sets used by the learner

2. Adaptive grid refinement

— grid cells that contain spurious counterexamples are refined

37

Learner

(minimize loss)
Verifier

Neural control policy 𝜋 and reach-avoid supermartingale 𝑉
(both neural networks)

Counterexamples to 𝑉

Return policy and proof
if verification successful

38

Centers of grid cells in which
verification fails

Neural control with supermartingale certificates

x
No policy returned
if timeout reached

Theorem (Soundness). If the algorithm outputs a control policy 𝜋, then 𝑉 is a valid RASM

and reach-avoidance is satisfiedwith probability at least 𝑝.

Learner

(minimize loss)
Verifier

Neural control policy 𝜋 and reach-avoid supermartingale 𝑉
(both neural networks)

Counterexamples to 𝑉

Return policy and proof
if verification successful

39

Centers of grid cells in which
verification fails

Formal verification of neural policies

Learner

(minimize loss)
Verifier

Neural control policy 𝜋 and reach-avoid supermartingale 𝑉
(both neural networks)

Counterexamples to 𝑉

Return policy and proof
if verification successful

40

Centers of grid cells in which
verification fails

Repair of neural policies

Initial controller

● Initialize neural network policy using 100 iterations of PPO or SAC

● Policy network: [256,256] hidden dimension with ReLU activations

● RASM network: [256,256] hidden dimension with ReLU activations

Experimental evaluation

41

See also: Badings et al. “Policy Verification in Stochastic Dynamical Systems Using Logarithmic Neural Certificates”. CAV 2025

Other learner-verifier CEGIS frameworks

Y.-C. Chang, N. Roohi, S. Gao

A. Abate, M. Giacobbe, et al.

S. Sankaranarayanan et al.

Continuous-time, deterministic

Certificates are Lyapunov functions

and control barrier functions

Closed-form/symbolic reasoning

Verification reduced to SMT-solving

Our framework

Discrete-time, stochastic

Certificates are supermartingales

Discretization, Lipschitz continuity

Verification via abstract interpretation

42

1. Compositional reasoning about reach-avoidance [NeurIPS’23]

2. Stability (a.k.a. co-Büchi or reach-and-stay) with prob. 1 [ATVA’23]

3.Supermartingale certificates for general omega-regular specifications [CAV’25]

Extension to more general specifications

43

● RL algorithms struggle with long-horizon tasks and complex logical specifications

● Compositional policy learning:

1.Decompose complex logical specifications into simpler subtasks

2.Solve subtasks

3.Compose subtask policies into a global policy

● Prior work: Either no formal guarantees or restricted to deterministic systems

Compositional policy learning [NeurIPS’23]

44

Our contribution

Compositional policy learning framework
for stochastic control systems

with formal guarantees on correctness

Example: Stochastic 9-rooms environment

45

Goal: Move from green to purple
without hitting a wall

Challenge: End-to-end policy
hard to formally verify

Solution: Decompose the task
into simpler subtasks

Compositional policy learning problem

46

Outline of our approach

47

48

Theory

(Supermartingale certificates)

Neural control design

(Correct-by-construction design
via learner-verifier loop)

Safe deployment

(Monitoring and shielding
with certificates)

Runtime monitoring in black-box systems [AAAI’25]

49

Learner

(minimize loss)
Verifier

Neural control policy 𝜋 and certificate 𝑉
(both neural networks)

Counterexamples to 𝑉

Possible in the black-box setting Not possible in the black-box setting

How to certify correctness of learned controllers and certificates?

How to repair them if they are incorrect?

50

Learner

(minimize loss)
Monitor

Neural control policy 𝜋 and certificate 𝑉
(both neural networks)

Counterexamples to 𝑉

Monitor certificate condition violations
Use certificate violations as new training data

Repair by re-learning

Runtime monitoring in black-box systems [AAAI’25]

51

Initialized: Neural controller and barrier certificate learned via SABLAS [1]

Baseline: Monitor and repair only with hard safety violations

CertPM + PredPM: Monitor and repair with hard safety violations + certificate violations

Drone Environment [1]

(Navigate a drone among

1024 other drones)

8D encoding

Runtime monitoring in black-box systems [AAAI’25]

[1] Qin et al. “SABLAS: Learning Safe Control for Black-box Dynamical Systems”. IEEE Robotics and Automation Letters 2022

Future directions

52

● Neural control under richer specifications (omega-regular specifications) [CAV’25]

● Scalability challenge [Work in progress]

● Compositional reasoning with respect to state space and specification [NeurIPS’23]

● Runtime monitoring and shielding of neural controllers [AAAI’25, TOSEM’26]

Open positions

Multiple PhD positions in computer science (fully funded)

Multiple Visiting Research Student positions, 6 months

Possible topic include (but not limited to):
• Formal verification and synthesis in Markov models
• Probabilistic program verification
• Certification of neural control systems
• Runtime monitoring and safeguarding
• Safe reinforcement learning
• Runtime monitoring and safeguarding of LLM agents

Contact: dzikelic@smu.edu.sg
More details: https://djordjezikelic.github.io/openings/
PhD application deadline: Jan 31, 2026

CSRankings (2020-2025)
#57 in general CS,
#3 in software engineering, #25 in AI

mailto:dzikelic@smu.edu.sg
https://djordjezikelic.github.io/openings/

Conclusion

Learner

(minimize loss)
Verifier

54

Neural network policy 𝜋 and supermartingale certificate 𝑉
(both neural networks)

Counterexamples to 𝑉1. Full automation

2. General continuous systems

3. Hard formal guarantees

4. Long or even infinite-time horizon

5. Consideration of stochastic environment uncertainty

Safe autonomy
(towards guaranteed safe AI)

	Slide 1: Neural Control with Certificates for Safe Autonomy
	Slide 2: Learning-enabled and neural control
	Slide 3: How to learn correct neural controllers?
	Slide 4: How to learn correct neural controllers?
	Slide 5: How to learn correct neural controllers?
	Slide 6: Neural control with certificates
	Slide 7
	Slide 8: Some examples of certificates
	Slide 9: How to learn correct controllers?
	Slide 10
	Slide 11: A Learner-verifier Framework for Neural Stochastic Control and Verification with Certificates [AAAI’22, AAAI’23, NeurIPS’23, ATVA’23, TACAS’23, AAAI’25, CAV’25]
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: What are {super,sub}martingales?
	Slide 17: What are {super,sub}martingales?
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Neural control with supermartingale certificates
	Slide 23: Neural control with supermartingale certificates
	Slide 24: Neural control with supermartingale certificates
	Slide 25: Learner module
	Slide 26: Training set: Discretization
	Slide 27: Loss function
	Slide 28: Neural control with supermartingale certificates
	Slide 29: Verifier module
	Slide 30: Verifier module
	Slide 31: Verifier module
	Slide 32: Verifier module
	Slide 33
	Slide 34: Expected value computation
	Slide 35: Neural control with supermartingale certificates
	Slide 36: Neural control with supermartingale certificates
	Slide 37: Verifier guides the learner
	Slide 38: Neural control with supermartingale certificates
	Slide 39: Formal verification of neural policies
	Slide 40: Repair of neural policies
	Slide 41
	Slide 42: Other learner-verifier CEGIS frameworks
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Runtime monitoring in black-box systems [AAAI’25]
	Slide 50: Runtime monitoring in black-box systems [AAAI’25]
	Slide 51: Runtime monitoring in black-box systems [AAAI’25]
	Slide 52: Future directions
	Slide 53: Open positions
	Slide 54: Conclusion

